Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
Aimed at students in mathematics, computer science, statistics, engineering, and physical and life sciences, this book introduces the foundations of tensor decompositions, a data analysis methodology ubiquitous in machine learning, signal processing, neuroscience, quantum computing, financial analysis, market analysis, and image processing.
Aimed at students in mathematics, computer science, statistics, engineering, and physical and life sciences, this book introduces the foundations of tensor decompositions, a data analysis methodology ubiquitous in machine learning, signal processing, neuroscience, quantum computing, financial analysis, market analysis, and image processing.
Über den Autor
Grey Ballard is Associate Professor of Computer Science at Wake Forest University. He specializes in numerical linear algebra, high performance computing, and computational science, with much of his work focusing on numerical methods and software for tensor decompositions. His work has been recognized with a National Science Foundation (NSF) Faculty Early Career Development (CAREER) award, a SIAM Linear Algebra Best Paper Prize, and conference best paper awards at the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), IEEE International Parallel & Distributed Processing Symposium (IPDPS), and IEEE International Conference on Data Mining (ICDM).
Inhaltsverzeichnis
Preface; I. Tensor Basics: 1. Tensors and their subparts; 2. Indexing and reshaping tensors; 3. Tensor operations; II. Tucker Decomposition: 4. Tucker decomposition; 5. Tucker tensor structure; 6. Tucker algorithms; 7. Tucker approximation error; 8. Tensor train decomposition; III. CP Decomposition: 9. Canonical polyacidic (CP) decomposition; 10. Kruskal tensor structure; 11. CP alternating least squares (CP-ALS) optimization; 12. CP gradient-based optimization (CP-OPT); 13. CP nonlinear least squares (CP-NLS) optimization; 14. CP algorithms for incomplete or scarce data; 15. Generalized CP (GCP) decomposition; 16. CP tensor rank and special topics; IV. Closing Observations: 17. Closing observations; V. Review Materials: A. Numerical linear algebra; B. Optimization principles and methods; C. Some statistics and probability; Bibliography; Index.
Details
Erscheinungsjahr: 2025
Fachbereich: Management
Genre: Importe, Wirtschaft
Rubrik: Recht & Wirtschaft
Medium: Buch
ISBN-13: 9781009471671
ISBN-10: 1009471678
Sprache: Englisch
Einband: Gebunden
Autor: Ballard, Grey
Kolda, Tamara G.
Hersteller: Cambridge University Press
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 255 x 179 x 28 mm
Von/Mit: Grey Ballard (u. a.)
Erscheinungsdatum: 26.06.2025
Gewicht: 1,068 kg
Artikel-ID: 133442853

Ähnliche Produkte