Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Actuarial Theory for Dependent Risks
Measures, Orders and Models
Buch von Michel Denuit (u. a.)
Sprache: Englisch

122,00 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
Foreword.

Preface.

PART 1 THE CONCEPT OF RISKS.

1 Modelling Risks.

1.1 Introduction.

1.2 The Probabilitsic Description of Risks.

1.3 Indepenance for Events and Conditional Probabilities.

1.4 Random Variables and Vectors.

1.5 Distribution Functions.

1.6 Mathematical Expectation.

1.7 Transforms.

1.8 Conditional Ditsributions.

1.9 Comonotonicity.

1.10 Mutual Exclusivity.

1.11 Exercises.

2 Measuring Risk.

2.1 Introduction.

2.2 Risk Measures.

2.3 Value-at-Risk.

2.4 Tail Value-at-Risk.

2.5 Risk MEasures Based on Expected Utility Theory.

2.6 Risk Measures Based on Distorted Expectation Theory.

2.7 Exercises.

2.8 Appendix: Convexity and Concavity.

3 Comparing Risks.

3.1 Introduction.

3.2 Stochastic Order Relations.

3.3 Stochastic Dominance.

3.4 Convex and Stop-Loss Orders.

3.5 Exercises.

PART 11 DEPENDANCE BETWEEN RISKS.

4 Modelling Dependence.

4.1 Introduction.

4.2 Sklar's Representation Theorem.

4.3 Families of Bivariate Copulas.

4.4 Properties of Copulas.

4.5 The Archimedean Family of Cpoulas.

4.6 Simulation from Given Marginals and Copula.

4.7 Multivariate Copulas.

4.8 Loss-Alae Modelling with Archimedean Copulas: A Case Study.

4.9 Exercises.

5 Measuring Depenence.

5.1 Introduction.

5.2 Concordance Measures.

5.3 Dependence Structures.

5.4 Exercises.

6 Comparing Depe6.1 Introduction.

6.2 Comparing in the Bivariate Case Using the Correlation Order.

6.3 Comparing Dependence in the Multivariate Case Using the Supermodular Order.

6.4 Positive Orthant Depenedence Order.

6.5 Exercises.

PART 111 APPLICATIONS TO INSURANCE MATHEMATICS.

7 Depenedence in Credibility Models Based on Generalized Linear Models.

7.1 Introduction.

7.2 Poisson Static Credibility for Claim Frequencies.

7.3 More Results for the Static Credibility Model.

7.4 More Results for the Dynamic Credibility Models.

7.5 On the Depenedence Induced By Bonus-Malus Scales.

7.6 Credibility Theory and Time Series for Non-Normal Data.

7.7 Exercises.

8 Stochastic Bounds on Functions of Dependent Risks.

8.1 Introduction.

8.2 Comparing Risks with Fixed Depoenedence Structure.

8.3 Stop-Loss Bounds on Functions of Dependent Risks.

8.4 Stochastic Bounds on Functions of Dependent Risks.

8.5 Some Financial Applications.

8.6 Exercises.

9 Integral Orderings and Probability Metrics.

9.1 Introduction.

9.2 Integral Stochastic Oredrings.

9.3 Integral Probability Metrics.

9.4 Total-Variation Distance.

9.5 Kolmogorov Distance.

9.6 Wasserstein Distance.

9.7 Stop-Loss Distance.

9.8 Integrated Stop-Loss Distance.

9.9 Distance Between the Individual and Collective Models in Risk Theory.

9.10 Compound Poisson Approximation for a Portfolio of Dependent Risks.

9.11 Exercises.

References.

Index.
Foreword.

Preface.

PART 1 THE CONCEPT OF RISKS.

1 Modelling Risks.

1.1 Introduction.

1.2 The Probabilitsic Description of Risks.

1.3 Indepenance for Events and Conditional Probabilities.

1.4 Random Variables and Vectors.

1.5 Distribution Functions.

1.6 Mathematical Expectation.

1.7 Transforms.

1.8 Conditional Ditsributions.

1.9 Comonotonicity.

1.10 Mutual Exclusivity.

1.11 Exercises.

2 Measuring Risk.

2.1 Introduction.

2.2 Risk Measures.

2.3 Value-at-Risk.

2.4 Tail Value-at-Risk.

2.5 Risk MEasures Based on Expected Utility Theory.

2.6 Risk Measures Based on Distorted Expectation Theory.

2.7 Exercises.

2.8 Appendix: Convexity and Concavity.

3 Comparing Risks.

3.1 Introduction.

3.2 Stochastic Order Relations.

3.3 Stochastic Dominance.

3.4 Convex and Stop-Loss Orders.

3.5 Exercises.

PART 11 DEPENDANCE BETWEEN RISKS.

4 Modelling Dependence.

4.1 Introduction.

4.2 Sklar's Representation Theorem.

4.3 Families of Bivariate Copulas.

4.4 Properties of Copulas.

4.5 The Archimedean Family of Cpoulas.

4.6 Simulation from Given Marginals and Copula.

4.7 Multivariate Copulas.

4.8 Loss-Alae Modelling with Archimedean Copulas: A Case Study.

4.9 Exercises.

5 Measuring Depenence.

5.1 Introduction.

5.2 Concordance Measures.

5.3 Dependence Structures.

5.4 Exercises.

6 Comparing Depe6.1 Introduction.

6.2 Comparing in the Bivariate Case Using the Correlation Order.

6.3 Comparing Dependence in the Multivariate Case Using the Supermodular Order.

6.4 Positive Orthant Depenedence Order.

6.5 Exercises.

PART 111 APPLICATIONS TO INSURANCE MATHEMATICS.

7 Depenedence in Credibility Models Based on Generalized Linear Models.

7.1 Introduction.

7.2 Poisson Static Credibility for Claim Frequencies.

7.3 More Results for the Static Credibility Model.

7.4 More Results for the Dynamic Credibility Models.

7.5 On the Depenedence Induced By Bonus-Malus Scales.

7.6 Credibility Theory and Time Series for Non-Normal Data.

7.7 Exercises.

8 Stochastic Bounds on Functions of Dependent Risks.

8.1 Introduction.

8.2 Comparing Risks with Fixed Depoenedence Structure.

8.3 Stop-Loss Bounds on Functions of Dependent Risks.

8.4 Stochastic Bounds on Functions of Dependent Risks.

8.5 Some Financial Applications.

8.6 Exercises.

9 Integral Orderings and Probability Metrics.

9.1 Introduction.

9.2 Integral Stochastic Oredrings.

9.3 Integral Probability Metrics.

9.4 Total-Variation Distance.

9.5 Kolmogorov Distance.

9.6 Wasserstein Distance.

9.7 Stop-Loss Distance.

9.8 Integrated Stop-Loss Distance.

9.9 Distance Between the Individual and Collective Models in Risk Theory.

9.10 Compound Poisson Approximation for a Portfolio of Dependent Risks.

9.11 Exercises.

References.

Index.
Details
Erscheinungsjahr: 2005
Medium: Buch
Inhalt: Foreword.Preface.PART 1 THE CONCEPT OF RISKS.1 Modelling Risks.1.1 Introduction.1.2 The Probabilitsic Description of Risks.1.3 Indepenance for Events and Conditional Probabilities.1.4 Random Variables and Vectors.1.5 Distribution Functions.1.6 Mathematic
ISBN-13: 9780470014929
ISBN-10: 047001492X
Sprache: Englisch
Einband: Gebunden
Autor: Michel Denuit
Jan Dhaene
Marc Goovaerts
Rob Kaas
Auflage: 1. Auflage
Hersteller: John Wiley & Sons
Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de
Abbildungen: Illustrations
Maße: 250 x 176 x 30 mm
Von/Mit: Michel Denuit (u. a.)
Erscheinungsdatum: 08.07.2005
Gewicht: 0,998 kg
Artikel-ID: 120779323
Details
Erscheinungsjahr: 2005
Medium: Buch
Inhalt: Foreword.Preface.PART 1 THE CONCEPT OF RISKS.1 Modelling Risks.1.1 Introduction.1.2 The Probabilitsic Description of Risks.1.3 Indepenance for Events and Conditional Probabilities.1.4 Random Variables and Vectors.1.5 Distribution Functions.1.6 Mathematic
ISBN-13: 9780470014929
ISBN-10: 047001492X
Sprache: Englisch
Einband: Gebunden
Autor: Michel Denuit
Jan Dhaene
Marc Goovaerts
Rob Kaas
Auflage: 1. Auflage
Hersteller: John Wiley & Sons
Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de
Abbildungen: Illustrations
Maße: 250 x 176 x 30 mm
Von/Mit: Michel Denuit (u. a.)
Erscheinungsdatum: 08.07.2005
Gewicht: 0,998 kg
Artikel-ID: 120779323
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte