Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
I Geometrisch-Topologische Vorbereitungen.- 1 Beispiele für Räume, Abbildungen und topologische Probleme.- 2 Homotopie.- 3 Simplizialkomplexe und Polyeder.- 4 CW-Räume.- II Fundamentalgruppe und Überlagerungen.- 5 Die Fundamentalgruppe.- 6 Überlagerungen.- III Homologietheorie.- 7 Homologiegruppen von Simplizialkomplexen.- 8 Algebraische Hilfsmittel.- 9 Homologiegruppen topologischer Räume.- 10 Homologie mit Koeffizienten.- 11 Einige Anwendungen der Homologietheorie.- 12 Homologie von Produkten.- IV Cohomologie, Dualität und Produkte.- 13 Cohomologie.- 14 Dualität in Mannigfaltigkeiten.- 15 Der Cohomologiering.- V Fortsetzung der Homotopietheorie.- 16 Homotopiegruppen.- 17 Faserungen und Homotopiegruppen.- 18 Homotopieklassifikation von Abbildungen.- Symbole.
I Geometrisch-Topologische Vorbereitungen.- 1 Beispiele für Räume, Abbildungen und topologische Probleme.- 2 Homotopie.- 3 Simplizialkomplexe und Polyeder.- 4 CW-Räume.- II Fundamentalgruppe und Überlagerungen.- 5 Die Fundamentalgruppe.- 6 Überlagerungen.- III Homologietheorie.- 7 Homologiegruppen von Simplizialkomplexen.- 8 Algebraische Hilfsmittel.- 9 Homologiegruppen topologischer Räume.- 10 Homologie mit Koeffizienten.- 11 Einige Anwendungen der Homologietheorie.- 12 Homologie von Produkten.- IV Cohomologie, Dualität und Produkte.- 13 Cohomologie.- 14 Dualität in Mannigfaltigkeiten.- 15 Der Cohomologiering.- V Fortsetzung der Homotopietheorie.- 16 Homotopiegruppen.- 17 Faserungen und Homotopiegruppen.- 18 Homotopieklassifikation von Abbildungen.- Symbole.
Inhaltsverzeichnis
I Geometrisch-Topologische Vorbereitungen.- 1 Beispiele für Räume, Abbildungen und topologische Probleme.- 2 Homotopie.- 3 Simplizialkomplexe und Polyeder.- 4 CW-Räume.- II Fundamentalgruppe und Überlagerungen.- 5 Die Fundamentalgruppe.- 6 Überlagerungen.- III Homologietheorie.- 7 Homologiegruppen von Simplizialkomplexen.- 8 Algebraische Hilfsmittel.- 9 Homologiegruppen topologischer Räume.- 10 Homologie mit Koeffizienten.- 11 Einige Anwendungen der Homologietheorie.- 12 Homologie von Produkten.- IV Cohomologie, Dualität und Produkte.- 13 Cohomologie.- 14 Dualität in Mannigfaltigkeiten.- 15 Der Cohomologiering.- V Fortsetzung der Homotopietheorie.- 16 Homotopiegruppen.- 17 Faserungen und Homotopiegruppen.- 18 Homotopieklassifikation von Abbildungen.- Symbole.
Details
Erscheinungsjahr: 1994
Fachbereich: Topologie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xi
488 S.
ISBN-13: 9783519122265
9783519022268
ISBN-10: 351912226X
3519022265
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Stöcker, Ralph
Zieschang, Heiner
Auflage: 2. überarb. und erweitert Auflage 1994
Hersteller: Vieweg & Teubner
Vieweg+Teubner Verlag
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 244 x 170 x 28 mm
Von/Mit: Ralph Stöcker (u. a.)
Erscheinungsdatum: 01.01.1994
Gewicht: 0,861 kg
Artikel-ID: 104777051

Ähnliche Produkte