Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
Studienarbeit aus dem Jahr 2024 im Fachbereich Informatik - Künstliche Intelligenz, Note: 1,0, AKAD University, ehem. AKAD Fachhochschule Stuttgart (Technik und Informatik), Veranstaltung: Deep Learning, Sprache: Deutsch, Abstract: Primärziel der Arbeit ist es, den grundlegenden Aufbau und die Funktionsweise von CNN zu erläutern. Dabei wird ebenfalls die Regularisierungsmethode Dropout zur Effizienzsteigerung vorgestellt, sowie fortgeschrittene CNN-Architekturen und Layertypen angeschnitten. Ein genereller Überblick über KNN soll dabei zum besseren Verständnis der Architektur beitragen. Um die Bedeutung von CNN für das Deep Learning darzustellen, wird die historische Entwicklung dieser Disziplin im Allgemeinen und von CNNs im Speziellen skizziert. Weiterhin werden Einsatzmöglichkeiten von CNN abseits der Bilderkennung vorgestellt.

Spätestens seit dem Sieg von Google DeepMinds Programm "AlphaGo" gegen den Go-Spitzenspieler Lee Se-dol im März 2016 sind Deep Learning und Künstliche Neuronale Netze (KNN ) im medialen Mainstream angekommen. Für den Erfolg von AlphaGo ist jedoch eine außerhalb von Fachkreisen weniger bekannte Variante des Deep Learnings namens Convolutional Neural Networks (CNN) verantwortlich, die normalerweise für die Bilderkennung eingesetzt wird. In diesem Bereich sind die CNN spätestens ab dem Jahr 2015 zum Standard geworden.

Das Assignment ist in vier Kapitel gegliedert. Auf die Einführung in die Fragestellung in Kapitel 1 folgt der Hauptteil mit den Kapiteln 2 und 3. Kapitel 2 stellt ein Grundlagenkapitel dar, in dem Deep Learning definiert und die Bestandteile und Wirkmechanismen eines KNN anhand von Feedforward-Netzen vorgestellt werden. Kapitel 3 befasst sich eingehend mit CNN. Zunächst werden der Aufbau und die unterschiedlichen Layertypen erklärt. Anschließend wird die Funktionsweise von CNN erläutert, wobei auch auf Unterschiede zur KNN-Architektur aus Kapitel 2 eingegangen wird. Weiterhin wird die Regularisierungsmethode "Dropout" für die Effizienzsteigerung tiefer Netze beleuchtet sowie neuartige CNN-Architekturen und Layertypen vorgestellt. Das Kapitel schließt mit einem Überblick über die Anwendungsgebiete von CNN. Die Ergebnisse der Arbeit werden im Fazit in Kapitel 4 zusammengefasst und kritisch beleuchtet.
Studienarbeit aus dem Jahr 2024 im Fachbereich Informatik - Künstliche Intelligenz, Note: 1,0, AKAD University, ehem. AKAD Fachhochschule Stuttgart (Technik und Informatik), Veranstaltung: Deep Learning, Sprache: Deutsch, Abstract: Primärziel der Arbeit ist es, den grundlegenden Aufbau und die Funktionsweise von CNN zu erläutern. Dabei wird ebenfalls die Regularisierungsmethode Dropout zur Effizienzsteigerung vorgestellt, sowie fortgeschrittene CNN-Architekturen und Layertypen angeschnitten. Ein genereller Überblick über KNN soll dabei zum besseren Verständnis der Architektur beitragen. Um die Bedeutung von CNN für das Deep Learning darzustellen, wird die historische Entwicklung dieser Disziplin im Allgemeinen und von CNNs im Speziellen skizziert. Weiterhin werden Einsatzmöglichkeiten von CNN abseits der Bilderkennung vorgestellt.

Spätestens seit dem Sieg von Google DeepMinds Programm "AlphaGo" gegen den Go-Spitzenspieler Lee Se-dol im März 2016 sind Deep Learning und Künstliche Neuronale Netze (KNN ) im medialen Mainstream angekommen. Für den Erfolg von AlphaGo ist jedoch eine außerhalb von Fachkreisen weniger bekannte Variante des Deep Learnings namens Convolutional Neural Networks (CNN) verantwortlich, die normalerweise für die Bilderkennung eingesetzt wird. In diesem Bereich sind die CNN spätestens ab dem Jahr 2015 zum Standard geworden.

Das Assignment ist in vier Kapitel gegliedert. Auf die Einführung in die Fragestellung in Kapitel 1 folgt der Hauptteil mit den Kapiteln 2 und 3. Kapitel 2 stellt ein Grundlagenkapitel dar, in dem Deep Learning definiert und die Bestandteile und Wirkmechanismen eines KNN anhand von Feedforward-Netzen vorgestellt werden. Kapitel 3 befasst sich eingehend mit CNN. Zunächst werden der Aufbau und die unterschiedlichen Layertypen erklärt. Anschließend wird die Funktionsweise von CNN erläutert, wobei auch auf Unterschiede zur KNN-Architektur aus Kapitel 2 eingegangen wird. Weiterhin wird die Regularisierungsmethode "Dropout" für die Effizienzsteigerung tiefer Netze beleuchtet sowie neuartige CNN-Architekturen und Layertypen vorgestellt. Das Kapitel schließt mit einem Überblick über die Anwendungsgebiete von CNN. Die Ergebnisse der Arbeit werden im Fazit in Kapitel 4 zusammengefasst und kritisch beleuchtet.
Details
Erscheinungsjahr: 2024
Fachbereich: Datenkommunikation, Netze & Mailboxen
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 20 S.
ISBN-13: 9783389000540
ISBN-10: 3389000542
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Sternitzke, Julian
Auflage: 1. Auflage
Hersteller: GRIN Verlag
Verantwortliche Person für die EU: GRIN Verlag, ein Imprint von GRIN Publishing GmbH, Trappentreustr. 1, D-80339 München, info@grin.com
Maße: 210 x 148 x 2 mm
Von/Mit: Julian Sternitzke
Erscheinungsdatum: 14.03.2024
Gewicht: 0,045 kg
Artikel-ID: 128794336

Ähnliche Produkte

Taschenbuch