Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Die Entwicklung des Tensorkalküls
Vom absoluten Differentialkalkül zur Relativitätstheorie
Taschenbuch von Karin Reich
Sprache: Deutsch

129,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Die allgemeine Relativitästheorie lässt sich nur mit Hilfe des Tensorkalküls formulieren. Diesen lernte Einstein 1912 in Form des absoluten Differentialkalküls kennen. Dessen Schöpfer war Gregorio Ricci, dem zusammen mit Sophus Lie und anderen der Ausbau der Theorie der Differentialinvarianten gelang. Der absolute Differentialkalkül passte zur allgemeinen Relativitätstheorie wie ein Schlüssel zum Schloss: der in den Jahren 1884-92 von Ricci entwickelte Kalkül erfüllte in der Tat genau das physikalische Konzept der allgemeinen Relativitätstheorie, das Einstein 1907-15 ausarbeitete. Ein derartiges Zusammenpassen war nur dadurch möglich, weil sowohl Ricci innerhalb der Mathematik als auch Einstein innerhalb der Physik vergleichbare Fragen stellten, nämlich Fragen nach Invarianten bei speziellen Transformationen. Es wird versucht, den historischen Weg so genau wie möglich anhand der Quellen nachzuzeichnen. Neu ist die Herausarbeitung des invariantentheoretischen Aspekts, dem gegenüber die Bedeutung der Differentialgeometrie für die Entwicklung des Tensorkalküls in den Hintergrund treten muss.
Die allgemeine Relativitästheorie lässt sich nur mit Hilfe des Tensorkalküls formulieren. Diesen lernte Einstein 1912 in Form des absoluten Differentialkalküls kennen. Dessen Schöpfer war Gregorio Ricci, dem zusammen mit Sophus Lie und anderen der Ausbau der Theorie der Differentialinvarianten gelang. Der absolute Differentialkalkül passte zur allgemeinen Relativitätstheorie wie ein Schlüssel zum Schloss: der in den Jahren 1884-92 von Ricci entwickelte Kalkül erfüllte in der Tat genau das physikalische Konzept der allgemeinen Relativitätstheorie, das Einstein 1907-15 ausarbeitete. Ein derartiges Zusammenpassen war nur dadurch möglich, weil sowohl Ricci innerhalb der Mathematik als auch Einstein innerhalb der Physik vergleichbare Fragen stellten, nämlich Fragen nach Invarianten bei speziellen Transformationen. Es wird versucht, den historischen Weg so genau wie möglich anhand der Quellen nachzuzeichnen. Neu ist die Herausarbeitung des invariantentheoretischen Aspekts, dem gegenüber die Bedeutung der Differentialgeometrie für die Entwicklung des Tensorkalküls in den Hintergrund treten muss.
Inhaltsverzeichnis
1 Einleitung.- 2 Tensoren ohne Tensorbegriff.- 2.1 Vorformen von Tensoren in der Differentialgeometrie.- 2.2 Vorformen von Tensoren in der Elastizitätstheorie.- 3 Die Theorie der Formen und Invarianten.- 3.1 Anfänge der Formentheorie.- 3.2 Anfänge der Invariantentheorie.- 4 Die Entwicklung eines Tensorbegriffs und eines Tensorkalküls.- 4.1 Die Theorie der quadratischen Differentialformen bzw. Differentialinvarianten.- 4.2 Kristallographie.- 4.3 Vektorrechnung.- 5 Tensoren in der Relativitätstheorie.- 5.1 Einsteins mathematische Voraussetzungen.- 5.2 Spezielle Relativitätstheorie.- 5.3 Allgemeine Relativitätstheorie.- 5.4 Die Geometriesierung der Relativitätstheorie.- 6 Schlußbetrachtung 213.- Namen- und Sachverzeichnis.
Details
Erscheinungsjahr: 2012
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Thema: Lexika
Medium: Taschenbuch
Inhalt: 334 S.
8 s/w Illustr.
ISBN-13: 9783034896436
ISBN-10: 3034896433
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Reich, Karin
Auflage: Softcover reprint of the original 1st edition 1994
Hersteller: Birkhäuser Basel
Springer Basel AG
Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com
Maße: 254 x 178 x 19 mm
Von/Mit: Karin Reich
Erscheinungsdatum: 10.10.2012
Gewicht: 0,641 kg
Artikel-ID: 105723816
Inhaltsverzeichnis
1 Einleitung.- 2 Tensoren ohne Tensorbegriff.- 2.1 Vorformen von Tensoren in der Differentialgeometrie.- 2.2 Vorformen von Tensoren in der Elastizitätstheorie.- 3 Die Theorie der Formen und Invarianten.- 3.1 Anfänge der Formentheorie.- 3.2 Anfänge der Invariantentheorie.- 4 Die Entwicklung eines Tensorbegriffs und eines Tensorkalküls.- 4.1 Die Theorie der quadratischen Differentialformen bzw. Differentialinvarianten.- 4.2 Kristallographie.- 4.3 Vektorrechnung.- 5 Tensoren in der Relativitätstheorie.- 5.1 Einsteins mathematische Voraussetzungen.- 5.2 Spezielle Relativitätstheorie.- 5.3 Allgemeine Relativitätstheorie.- 5.4 Die Geometriesierung der Relativitätstheorie.- 6 Schlußbetrachtung 213.- Namen- und Sachverzeichnis.
Details
Erscheinungsjahr: 2012
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Thema: Lexika
Medium: Taschenbuch
Inhalt: 334 S.
8 s/w Illustr.
ISBN-13: 9783034896436
ISBN-10: 3034896433
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Reich, Karin
Auflage: Softcover reprint of the original 1st edition 1994
Hersteller: Birkhäuser Basel
Springer Basel AG
Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com
Maße: 254 x 178 x 19 mm
Von/Mit: Karin Reich
Erscheinungsdatum: 10.10.2012
Gewicht: 0,641 kg
Artikel-ID: 105723816
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte