Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Energy-Based Models with Applications to Speech and Language Processing
Taschenbuch von Zhijian Ou
Sprache: Englisch

106,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Energy-Based Models (EBMs) are an important class of probabilistic models, also known as random fields and undirected graphical models. EBMs are un-normalized and thus radically different from other popular self-normalized probabilistic models such as hidden Markov models (HMMs), autoregressive models, generative adversarial nets (GANs) and variational auto-encoders (VAEs).
Over the past years, EBMs have attracted increasing interest not only from the core machine learning community, but also from application domains such as speech, vision, natural language processing (NLP) and so on, due to significant theoretical and algorithmic progress. The sequential nature of speech and language also presents special challenges and needs a different treatment from processing fix-dimensional data (e.g., images). Therefore, the purpose of this monograph is to present a systematic introduction to energy-based models, including both algorithmic progress and applications in speech and language processing. First, the basics of EBMs are introduced, including classic models, recent models parameterized by neural networks, sampling methods, and various learning methods from the classic learning algorithms to the most advanced ones. Then, the application of EBMs in three different scenarios is presented, i.e., for modeling marginal, conditional and joint distributions, respectively. 1) EBMs for sequential data with applications in language modeling, where the main focus is on the marginal distribution of a sequence itself; 2) EBMs for modeling conditional distributions of target sequences given observation sequences, with applications in speech recognition, sequence labeling and text generation; 3) EBMs for modeling joint distributions of both sequences of observations and targets, and their applications in semi-supervised learning and calibrated natural language understanding. Lastly, several open-source toolkits are introduced to help readers get familiar with the techniques for developing and applying energy-based models.
Energy-Based Models (EBMs) are an important class of probabilistic models, also known as random fields and undirected graphical models. EBMs are un-normalized and thus radically different from other popular self-normalized probabilistic models such as hidden Markov models (HMMs), autoregressive models, generative adversarial nets (GANs) and variational auto-encoders (VAEs).
Over the past years, EBMs have attracted increasing interest not only from the core machine learning community, but also from application domains such as speech, vision, natural language processing (NLP) and so on, due to significant theoretical and algorithmic progress. The sequential nature of speech and language also presents special challenges and needs a different treatment from processing fix-dimensional data (e.g., images). Therefore, the purpose of this monograph is to present a systematic introduction to energy-based models, including both algorithmic progress and applications in speech and language processing. First, the basics of EBMs are introduced, including classic models, recent models parameterized by neural networks, sampling methods, and various learning methods from the classic learning algorithms to the most advanced ones. Then, the application of EBMs in three different scenarios is presented, i.e., for modeling marginal, conditional and joint distributions, respectively. 1) EBMs for sequential data with applications in language modeling, where the main focus is on the marginal distribution of a sequence itself; 2) EBMs for modeling conditional distributions of target sequences given observation sequences, with applications in speech recognition, sequence labeling and text generation; 3) EBMs for modeling joint distributions of both sequences of observations and targets, and their applications in semi-supervised learning and calibrated natural language understanding. Lastly, several open-source toolkits are introduced to help readers get familiar with the techniques for developing and applying energy-based models.
Details
Erscheinungsjahr: 2024
Fachbereich: Nachrichtentechnik
Genre: Importe, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781638283065
ISBN-10: 1638283060
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Ou, Zhijian
Hersteller: Now Publishers Inc
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 234 x 156 x 13 mm
Von/Mit: Zhijian Ou
Erscheinungsdatum: 20.03.2024
Gewicht: 0,348 kg
Artikel-ID: 128818023
Details
Erscheinungsjahr: 2024
Fachbereich: Nachrichtentechnik
Genre: Importe, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781638283065
ISBN-10: 1638283060
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Ou, Zhijian
Hersteller: Now Publishers Inc
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 234 x 156 x 13 mm
Von/Mit: Zhijian Ou
Erscheinungsdatum: 20.03.2024
Gewicht: 0,348 kg
Artikel-ID: 128818023
Sicherheitshinweis