Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
This book develops geometric techniques for proving the polynomial time solvability of problems in convexity theory, geometry, and, in particular, combinatorial optimization. The book is a continuation and extension of previous research of the authors for which they received the Fulkerson prize, awarded by the Mathematical Programming Society and the American Mathematical Society. To quote from a review: "This book ... is doubtless one of the outstanding books in discrete mathematics at all." (Journal of Information Proceedings and Cybernetics).
This book develops geometric techniques for proving the polynomial time solvability of problems in convexity theory, geometry, and, in particular, combinatorial optimization. The book is a continuation and extension of previous research of the authors for which they received the Fulkerson prize, awarded by the Mathematical Programming Society and the American Mathematical Society. To quote from a review: "This book ... is doubtless one of the outstanding books in discrete mathematics at all." (Journal of Information Proceedings and Cybernetics).
Zusammenfassung
This book develops geometric techniques for proving the polynomial time solvability of problems in convexity theory, geometry, and, in particular, combinatorial optimization. The book is a continuation and extension of previous research of the authors for which they received the Fulkerson prize, awarded by the Mathematical Programming Society and the American Mathematical Society. To quote from a review: "This book ... is doubtless one of the outstanding books in discrete mathematics at all." (Journal of Information Proceedings and Cybernetics).
Inhaltsverzeichnis
0. Mathematical Preliminaries.- 0.1 Linear Algebra and Linear Programming.- 0.2 Graph Theory.- 1. Complexity, Oracles, and Numerical Computation.- 1.1 Complexity Theory: P and NP.- 1.2 Oracles.- 1.3 Approximation and Computation of Numbers.- 1.4 Pivoting and Related Procedures.- 2. Algorithmic Aspects of Convex Sets: Formulation of the Problems.- 2.1 Basic Algorithmic Problems for Convex Sets.- 2.2 Nondeterministic Decision Problems for Convex Sets.- 3. The Ellipsoid Method.- 3.1 Geometric Background and an Informal Description.- 3.2 The Central-Cut Ellipsoid Method.- 3.3 The Shallow-Cut Ellipsoid Method.- 4. Algorithms for Convex Bodies.- 4.1 Summary of Results.- 4.2 Optimization from Separation.- 4.3 Optimization from Membership.- 4.4 Equivalence of the Basic Problems.- 4.5 Some Negative Results.- 4.6 Further Algorithmic Problems for Convex Bodies.- 4.7 Operations on Convex Bodies.- 5. Diophantine Approximation and Basis Reduction.- 5.1 Continued Fractions.- 5.2 Simultaneous Diophantine Approximation: Formulation of the Problems.- 5.3 Basis Reduction in Lattices.- 5.4 More on Lattice Algorithms.- 6. Rational Polyhedra.- 6.1 Optimization over Polyhedra: A Preview.- 6.2 Complexity of Rational Polyhedra.- 6.3 Weak and Strong Problems.- 6.4 Equivalence of Strong Optimization and Separation.- 6.5 Further Problems for Polyhedra.- 6.6 Strongly Polynomial Algorithms.- 6.7 Integer Programming in Bounded Dimension.- 7. Combinatorial Optimization: Some Basic Examples.- 7.1 Flows and Cuts.- 7.2 Arborescences.- 7.3 Matching.- 7.4 Edge Coloring.- 7.5 Matroids.- 7.6 Subset Sums.- 7.7 Concluding Remarks.- 8. Combinatorial Optimization: A Tour d'Horizon.- 8.1 Blocking Hypergraphs and Polyhedra.- 8.2 Problems on Bipartite Graphs.- 8.3 Flows, Paths, Chains, and Cuts.- 8.4 Trees,Branchings, and Rooted and Directed Cuts.- 8.5 Matchings, Odd Cuts, and Generalizations.- 8.6 Multicommodity Flows.- 9. Stable Sets in Graphs.- 9.1 Odd Circuit Constraints and t-Perfect Graphs.- 9.2 Clique Constraints and Perfect Graphs.- 9.3 Orthonormal Representations.- 9.4 Coloring Perfect Graphs.- 9.5 More Algorithmic Results on Stable Sets.- 10. Submodular Functions.- 10.1 Submodular Functions and Polymatroids.- 10.2 Algorithms for Polymatroids and Submodular Functions.- 10.3 Submodular Functions on Lattice, Intersecting, and Crossing Families.- 10.4 Odd Submodular Function Minimization and Extensions.- References.- Notation Index.- Author Index.
Details
Erscheinungsjahr: 2011
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: XII
362 S.
ISBN-13: 9783642782428
ISBN-10: 3642782426
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Grötschel, Martin
Lovasz, Laszlo
Schrijver, Alexander
Auflage: Second Edition 1993
Hersteller: Springer
Springer Vieweg
Springer-Verlag GmbH
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 242 x 170 x 21 mm
Von/Mit: Martin Grötschel (u. a.)
Erscheinungsdatum: 21.12.2011
Gewicht: 0,649 kg
Artikel-ID: 106366849

Ähnliche Produkte

Taschenbuch
Taschenbuch

67,95 € UVP 80,24 €

Lieferzeit 2-4 Werktage