Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
In recent years, new algorithms for dealing with rings of differential operators have been discovered and implemented. A main tool is the theory of Gröbner bases, which is reexamined here from the point of view of geometric deformations. Perturbation techniques have a long tradition in analysis; Gröbner deformations of left ideals in the Weyl algebra are the algebraic analogue to classical perturbation techniques. The algorithmic methods introduced here are particularly useful for studying the systems of multidimensional hypergeometric PDEs introduced by Gelfand, Kapranov and Zelevinsky. The Gröbner deformation of these GKZ hypergeometric systems reduces problems concerning hypergeometric functions to questions about commutative monomial ideals, and leads to an unexpected interplay between analysis and combinatorics. This book contains a number of original research results on holonomic systems and hypergeometric functions, and raises many open problems for future research in this area.
In recent years, new algorithms for dealing with rings of differential operators have been discovered and implemented. A main tool is the theory of Gröbner bases, which is reexamined here from the point of view of geometric deformations. Perturbation techniques have a long tradition in analysis; Gröbner deformations of left ideals in the Weyl algebra are the algebraic analogue to classical perturbation techniques. The algorithmic methods introduced here are particularly useful for studying the systems of multidimensional hypergeometric PDEs introduced by Gelfand, Kapranov and Zelevinsky. The Gröbner deformation of these GKZ hypergeometric systems reduces problems concerning hypergeometric functions to questions about commutative monomial ideals, and leads to an unexpected interplay between analysis and combinatorics. This book contains a number of original research results on holonomic systems and hypergeometric functions, and raises many open problems for future research in this area.
Zusammenfassung
Es handelt sich um das erste Buch zu diesem Thema. Es ist sowohl eine Forschungsmonographie als auch ein Buch, welches in einem Kurs zu symbolischem Rechnen, algebraischer Geometrie oder algebraischer Analysis Verwendung finden kann.
Inhaltsverzeichnis
1. Basic Notions.- 2. Solving Regular Holonomic Systems.- 3. Hypergeometric Series.- 4. Rank versus Volume.- 5. Integration of D-modules.- References.
Details
Erscheinungsjahr: 2011
Fachbereich: Analysis
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: viii
254 S.
5 s/w Illustr.
254 p. 5 illus.
ISBN-13: 9783642085345
ISBN-10: 3642085342
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Saito, Mutsumi
Takayama, Nobuki
Sturmfels, Bernd
Auflage: Softcover reprint of the original 1st edition 2000
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 15 mm
Von/Mit: Mutsumi Saito (u. a.)
Erscheinungsdatum: 14.08.2011
Gewicht: 0,406 kg
Artikel-ID: 106854867

Ähnliche Produkte

Buch
Tipp
Taschenbuch
Taschenbuch
Tipp