Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Handbook of Continuum Mechanics
General Concepts Thermoelasticity
Taschenbuch von Jean Salencon
Sprache: Englisch

97,60 €*

-17 % UVP 117,69 €
inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
The scale that concerns the practitioner in mechanics is usually qualified as macroscopic. Indeed, applications are rarely much below the human scale, and in order to be relevant models must be constructed on a similar scale, several orders of magnitude greater than the objects that are normally attributed to the physicist's sphere of interest. The mechanicist is therefore aware of the limits of these models, no matter how elegant their mathematical formulation may be, when the time comes far experimental validation. The mechanicist has a deep concern for the microscopic phenomena at the heart of what is being modelled, exposed by the physicist's research, which can today explain a wide range of material behaviour. The aim of this book is to present the general ideas behind continuum mechanics, thermoelasticity and one-dimensional media. Our approach to constructing mechanical models and modelling forces is based upon the principle oi virtual work. There are several advantages to thismethod. To begin with, it clearly emphasises the key role played by geometrical modelling, leading to mechanically consistent presentations in a systematic way. In addition, by requiring rigorous thought and clear formulation of hypotheses, it identifies the inductive steps and emphasises the need for validation, despite its axiomatic appearance. Moreover, once mastered, it will serve as a productive tool in the reader's later research career. This duality is used in the chapter devoted to variational methods for the solution of thermoelastic problems.
The scale that concerns the practitioner in mechanics is usually qualified as macroscopic. Indeed, applications are rarely much below the human scale, and in order to be relevant models must be constructed on a similar scale, several orders of magnitude greater than the objects that are normally attributed to the physicist's sphere of interest. The mechanicist is therefore aware of the limits of these models, no matter how elegant their mathematical formulation may be, when the time comes far experimental validation. The mechanicist has a deep concern for the microscopic phenomena at the heart of what is being modelled, exposed by the physicist's research, which can today explain a wide range of material behaviour. The aim of this book is to present the general ideas behind continuum mechanics, thermoelasticity and one-dimensional media. Our approach to constructing mechanical models and modelling forces is based upon the principle oi virtual work. There are several advantages to thismethod. To begin with, it clearly emphasises the key role played by geometrical modelling, leading to mechanically consistent presentations in a systematic way. In addition, by requiring rigorous thought and clear formulation of hypotheses, it identifies the inductive steps and emphasises the need for validation, despite its axiomatic appearance. Moreover, once mastered, it will serve as a productive tool in the reader's later research career. This duality is used in the chapter devoted to variational methods for the solution of thermoelastic problems.
Zusammenfassung

Outstanding approach from the Ecole Polytechnique's educational program

High mathematical level of teaching

The most complete book ever

Abstracts, summaries, formula boxes, exercises with solution included

Fold-out glossary and short reader included

Includes supplementary material: [...]

Inhaltsverzeichnis
I. Modelling the Continuum.- II. Deformation.- III. Kinematics.- IV. The Virtual Work Approach to the Modelling of Forces.- V. Modelling Forces in Continuum Mechanics.- VI. Local Analysis of Stresses.- VII. Thermoelasticity.- VIII. Thermoelastic Processes and Equilibrium.- IX. Classic Topics in Three-Dimensional Elasticity.- X. Variational Methods in Linearised Thermoelasticity.- XI. Statics of One-Dimensional Media.- XII. Thermoelastic Structural Analysis.- Appendices.- I. Element of Tensor Calculus.- 1 Tensors on a Vector Space.- 1.1 Definition.- 1.2 First Rank Tensors.- 1.3 Second Rank Tensors.- 2 Tensor Product of Tensors.- 2.1 Definition.- 2.2 Examples.- 2.3 Product Tensors.- 3 Tensor Components.- 3.1 Definition.- 3.2 Change of Basis.- 3.3 Mixed Second Rank Tensors.- 3.4 Twice Contravariant or Twice Covariant Second Rank Tensors.- 3.5 Components of a Tensor Product.- 4 Contraction.- 4.1 Definition of the Contraction of a Tensor.- 4.2 Contracted Multiplication.- 4.3 Doubly Contracted Product of Two Tensors.- 4.4 Total Contraction of a Tensor Product.- 4.5 Defining Tensors by Duality.- 4.6 Invariants of a Mixed Second Rank Tensor.- 5 Tensors on a Euclidean Vector Space.- 5.1 Definition of a Euclidean Space.- 5.2 Application: Deformation in a Linear Mapping.- 5.5 First Rank Euclidean Tensors and the Contracted Product.- 5.6 Second Rank Euclidean Tensors of Simple Product Form and their Contracted Products.- 5.7 Second Rank Euclidean Tensors.- 5.10 Principal Axes and Principal Values of a Real Symmetric Second Rank Euclidean Tensor.- 6 Tensor Fields.- 6.1 Definition.- 6.2 Derivative and Gradient of a Tensor Field.- 6.3 Divergence of a Tensor Field.- 6.4 Curvilinear Coordinates.- Summary of Main Formulas.- II. Differential Operators: Basic Formulas.- 1 Orthonormal Cartesian Coordinates.- 1.1 Coordinates.- 1.2 Vector Field.- 1.3 Scalar Function.- 1.4 Second Rank Tensor Field.- 2 General Cartesian Coordinates.- 2.1 Coordinates.- 2.2 Vector Field.- 2.3 Scalar Function.- 2.4 Second Rank Tensor Field.- 3 Cylindrical Coordinates.- 3.1 Parametrisation.- 3.2 Vector Field.- 3.3 Scalar Function.- 3.4 Symmetric Second Rank Tensor Field.- 4 Spherical Coordinates.- 4.1 Parametrisation.- 4.2 Vector Field.- 4.3 Scalar Function.- 4.4 Symmetric Second Rank Tensor Field.- III. Elements of Plane Elasticity.- 1 Plane Problems.- 2 Plane Strain Thermoelastic Equilibrium.- 2.1 Plane Linearised Strain Tensor.- 2.2 Plane Strain Displacement Field.- 2.3 Plane Strain Thermoelastic Equilibrium in a Homogeneous and Isotropic Material.- 2.4 Solution by the Displacement Method.- 2.5 Solution by the Stress Method.- 2.6 Remarks on the Plane Strain Two-Dimensional Problem.- 2.7 Two-Dimensional Beltrami-Michell Equation.- 2.8 Body Forces Deriving from a Potential. Airy Function.- 2.9 Cylindrical Tube Under Pressure.- 3 Plane Stress Thermoelastic Equilibrium.- 3.1 Plane Stress Tensor.- 3.2 Plane Stress Field.- 3.3 Plane Stress Thermoelastic Equilibrium in a Homogeneous and Isotropic Material.- 3.4 Solution.- 3.5 Cylindrical Tube Under Pressure.- Summary of Main Formulas.
Details
Erscheinungsjahr: 2012
Fachbereich: Kraftwerktechnik
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 2 Taschenbücher
ISBN-13: 9783642625565
ISBN-10: 3642625568
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Salencon, Jean
Übersetzung: Lyle, S.
Auflage: Softcover reprint of the original 1st edition 2001
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 50 mm
Von/Mit: Jean Salencon
Erscheinungsdatum: 07.12.2012
Gewicht: 1,384 kg
Artikel-ID: 105410765
Zusammenfassung

Outstanding approach from the Ecole Polytechnique's educational program

High mathematical level of teaching

The most complete book ever

Abstracts, summaries, formula boxes, exercises with solution included

Fold-out glossary and short reader included

Includes supplementary material: [...]

Inhaltsverzeichnis
I. Modelling the Continuum.- II. Deformation.- III. Kinematics.- IV. The Virtual Work Approach to the Modelling of Forces.- V. Modelling Forces in Continuum Mechanics.- VI. Local Analysis of Stresses.- VII. Thermoelasticity.- VIII. Thermoelastic Processes and Equilibrium.- IX. Classic Topics in Three-Dimensional Elasticity.- X. Variational Methods in Linearised Thermoelasticity.- XI. Statics of One-Dimensional Media.- XII. Thermoelastic Structural Analysis.- Appendices.- I. Element of Tensor Calculus.- 1 Tensors on a Vector Space.- 1.1 Definition.- 1.2 First Rank Tensors.- 1.3 Second Rank Tensors.- 2 Tensor Product of Tensors.- 2.1 Definition.- 2.2 Examples.- 2.3 Product Tensors.- 3 Tensor Components.- 3.1 Definition.- 3.2 Change of Basis.- 3.3 Mixed Second Rank Tensors.- 3.4 Twice Contravariant or Twice Covariant Second Rank Tensors.- 3.5 Components of a Tensor Product.- 4 Contraction.- 4.1 Definition of the Contraction of a Tensor.- 4.2 Contracted Multiplication.- 4.3 Doubly Contracted Product of Two Tensors.- 4.4 Total Contraction of a Tensor Product.- 4.5 Defining Tensors by Duality.- 4.6 Invariants of a Mixed Second Rank Tensor.- 5 Tensors on a Euclidean Vector Space.- 5.1 Definition of a Euclidean Space.- 5.2 Application: Deformation in a Linear Mapping.- 5.5 First Rank Euclidean Tensors and the Contracted Product.- 5.6 Second Rank Euclidean Tensors of Simple Product Form and their Contracted Products.- 5.7 Second Rank Euclidean Tensors.- 5.10 Principal Axes and Principal Values of a Real Symmetric Second Rank Euclidean Tensor.- 6 Tensor Fields.- 6.1 Definition.- 6.2 Derivative and Gradient of a Tensor Field.- 6.3 Divergence of a Tensor Field.- 6.4 Curvilinear Coordinates.- Summary of Main Formulas.- II. Differential Operators: Basic Formulas.- 1 Orthonormal Cartesian Coordinates.- 1.1 Coordinates.- 1.2 Vector Field.- 1.3 Scalar Function.- 1.4 Second Rank Tensor Field.- 2 General Cartesian Coordinates.- 2.1 Coordinates.- 2.2 Vector Field.- 2.3 Scalar Function.- 2.4 Second Rank Tensor Field.- 3 Cylindrical Coordinates.- 3.1 Parametrisation.- 3.2 Vector Field.- 3.3 Scalar Function.- 3.4 Symmetric Second Rank Tensor Field.- 4 Spherical Coordinates.- 4.1 Parametrisation.- 4.2 Vector Field.- 4.3 Scalar Function.- 4.4 Symmetric Second Rank Tensor Field.- III. Elements of Plane Elasticity.- 1 Plane Problems.- 2 Plane Strain Thermoelastic Equilibrium.- 2.1 Plane Linearised Strain Tensor.- 2.2 Plane Strain Displacement Field.- 2.3 Plane Strain Thermoelastic Equilibrium in a Homogeneous and Isotropic Material.- 2.4 Solution by the Displacement Method.- 2.5 Solution by the Stress Method.- 2.6 Remarks on the Plane Strain Two-Dimensional Problem.- 2.7 Two-Dimensional Beltrami-Michell Equation.- 2.8 Body Forces Deriving from a Potential. Airy Function.- 2.9 Cylindrical Tube Under Pressure.- 3 Plane Stress Thermoelastic Equilibrium.- 3.1 Plane Stress Tensor.- 3.2 Plane Stress Field.- 3.3 Plane Stress Thermoelastic Equilibrium in a Homogeneous and Isotropic Material.- 3.4 Solution.- 3.5 Cylindrical Tube Under Pressure.- Summary of Main Formulas.
Details
Erscheinungsjahr: 2012
Fachbereich: Kraftwerktechnik
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 2 Taschenbücher
ISBN-13: 9783642625565
ISBN-10: 3642625568
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Salencon, Jean
Übersetzung: Lyle, S.
Auflage: Softcover reprint of the original 1st edition 2001
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 50 mm
Von/Mit: Jean Salencon
Erscheinungsdatum: 07.12.2012
Gewicht: 1,384 kg
Artikel-ID: 105410765
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte