139,09 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
In addition, the authors also introduce the applications of machine learning for beam controls. Selected machine learning algorithms, such as supervised learning based on artificial neural networks and Gaussian processes, and reinforcement learning, are discussed. They are applied to configure feedback loops, accelerate global optimizations, and directly synthesize optimal controllers. Authors also demonstrate the effectiveness of these algorithms using either simulation or tests at the SwissFEL. With this book, the readers gain systematic knowledge of intelligent beam controls and learn the layered architecture guiding the design of practical beam control systems.
In addition, the authors also introduce the applications of machine learning for beam controls. Selected machine learning algorithms, such as supervised learning based on artificial neural networks and Gaussian processes, and reinforcement learning, are discussed. They are applied to configure feedback loops, accelerate global optimizations, and directly synthesize optimal controllers. Authors also demonstrate the effectiveness of these algorithms using either simulation or tests at the SwissFEL. With this book, the readers gain systematic knowledge of intelligent beam controls and learn the layered architecture guiding the design of practical beam control systems.
Describes the core systems and algorithms to achieve stable and optimal beam parameters in an accelerator
Introduces the modern methods such as the multi-objective optimization and machine learning
Provides recent research on using machine learning to train a nonlinear model to describe the input-output relation
Introduction.- Beam feedback control.- Beam optimizations.- Machine learning for beam control.
Erscheinungsjahr: | 2023 |
---|---|
Fachbereich: | Atomphysik & Kernphysik |
Genre: | Mathematik, Medizin, Naturwissenschaften, Physik, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: |
xiv
155 S. 15 s/w Illustr. 63 farbige Illustr. 155 p. 78 illus. 63 illus. in color. |
ISBN-13: | 9783031285967 |
ISBN-10: | 3031285964 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Simrock, Stefan
Geng, Zheqiao |
Hersteller: | Springer International Publishing |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 241 x 160 x 15 mm |
Von/Mit: | Stefan Simrock (u. a.) |
Erscheinungsdatum: | 12.05.2023 |
Gewicht: | 0,461 kg |
Describes the core systems and algorithms to achieve stable and optimal beam parameters in an accelerator
Introduces the modern methods such as the multi-objective optimization and machine learning
Provides recent research on using machine learning to train a nonlinear model to describe the input-output relation
Introduction.- Beam feedback control.- Beam optimizations.- Machine learning for beam control.
Erscheinungsjahr: | 2023 |
---|---|
Fachbereich: | Atomphysik & Kernphysik |
Genre: | Mathematik, Medizin, Naturwissenschaften, Physik, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: |
xiv
155 S. 15 s/w Illustr. 63 farbige Illustr. 155 p. 78 illus. 63 illus. in color. |
ISBN-13: | 9783031285967 |
ISBN-10: | 3031285964 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Simrock, Stefan
Geng, Zheqiao |
Hersteller: | Springer International Publishing |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 241 x 160 x 15 mm |
Von/Mit: | Stefan Simrock (u. a.) |
Erscheinungsdatum: | 12.05.2023 |
Gewicht: | 0,461 kg |