Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package PMTK (probabilistic modeling toolkit) that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package PMTK (probabilistic modeling toolkit) that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Details
Empfohlen (von): 18
Erscheinungsjahr: 2016
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Einband - fest (Hardcover)
ISBN-13: 9780262018029
ISBN-10: 0262018020
Sprache: Englisch
Autor: Murphy, Kevin P.
Redaktion: Bach, Francis
Hersteller: MIT Press
The MIT Press
Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de
Abbildungen: 300 COLOR ILLUS., 165 B&W ILLUS.
Maße: 234 x 203 x 44 mm
Von/Mit: Kevin P. Murphy
Erscheinungsdatum: 18.10.2016
Gewicht: 1,916 kg
Artikel-ID: 106475441

Ähnliche Produkte