Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Mathematical and Theoretical Neuroscience
Cell, Network and Data Analysis
Buch von Thierry Nieus (u. a.)
Sprache: Englisch

126,95 €*

-15 % UVP 149,79 €
inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
This volume gathers contributions from theoretical, experimental and computational researchers who are working on various topics in theoretical/computational/mathematical neuroscience. The focus is on mathematical modeling, analytical and numerical topics, and statistical analysis in neuroscience with applications. The following subjects are considered: mathematical modelling in Neuroscience, analytical and numerical topics; statistical analysis in Neuroscience; Neural Networks; Theoretical Neuroscience. The book is addressed to researchers involved in mathematical models applied to neuroscience.
This volume gathers contributions from theoretical, experimental and computational researchers who are working on various topics in theoretical/computational/mathematical neuroscience. The focus is on mathematical modeling, analytical and numerical topics, and statistical analysis in neuroscience with applications. The following subjects are considered: mathematical modelling in Neuroscience, analytical and numerical topics; statistical analysis in Neuroscience; Neural Networks; Theoretical Neuroscience. The book is addressed to researchers involved in mathematical models applied to neuroscience.
Über den Autor
Prof. Giovanni Naldi studied Mathematics at the University of Pavia and at the University of Milan, where he also received his PhD in Applied Mathematics. He is currently a full professor of Numerical Analysis at the University of Milan and the director of the ADAMSS (ADvanced Applied Mathematical and Statistical Sciences) Center at the same University. His research work mainly focuses on the numerical analysis of partial differential equations, wavelet-based methods; multiscale models, non-linear evolution phenomena, biomathematics, and computational neuroscience. He has supervised eight doctoral theses and is the author of more than 60 papers.
Prof. Thiery Nieus received his PhD in Applied Mathematics at the Department of Mathematics F. Enriques in Milan (Italy). His research focuses on the computations performed by neuronal networks. His work involves the analysis and modeling of multiscale data, ranging from single synapses to population recordings. In September 2016 he joined Marcello Massimini's laboratory (University of Milan, Italy), working on computational models of the thalamocortical circuit and on complexity measures of TMS/EEG data.
Zusammenfassung
Offers a survey on recent hot topics in computational neuroscience
Includes state of the art chapters (within a huge literature)
Provides recent applications using big data and modelling
Inhaltsverzeichnis

1 Simulating cortical Local Field Potentials and Thalamus dynamic regimes with integrate-and-fire neurons.- 2 Computational modeling as a means to defining neuronal spike pattern behaviors.- 3 Chemotactic guidance of growth cones: a hybrid computational model.- 4 Mathematical Modeling of Cerebellar Granular Layer Neurons and Network Activity: Information Estimation, Population Behaviour and Robotic Abstractions.- 5 Bifurcation analysis of a sparse neural network with cubic topology.- 6 Simultaneous jumps in interacting particle systems: from neuronal networks to a general framework.- 7 Neural fields: Localised states with piece-wise constant interactions.- 8 Mathematical models of visual perception based on cortical architectures.- 9 Mathematical models of visual perception for the analysis of Geometrical optical illusions.- 10 Exergaming for autonomous rehabilitation.- 11 E-infrastructures for neuroscientists: the GAAIN and neuGRID examples.- 12 Nonlinear Time series Analysis.- 13Measures of spike train synchrony and Directionality.- 14 Space-by-time tensor decomposition of single-trial analysis of neural signals.- 15 Inverse Modeling for MEG/EEG data.

Details
Erscheinungsjahr: 2018
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: ix
253 S.
ISBN-13: 9783319682969
ISBN-10: 3319682962
Sprache: Englisch
Herstellernummer: 978-3-319-68296-9
Einband: Gebunden
Autor: Naldi, Giovanni
Nieus, Thierry
Redaktion: Nieus, Thierry
Naldi, Giovanni
Herausgeber: Giovanni Naldi/Thierry Nieus
Auflage: 1st edition 2017
Hersteller: Springer International Publishing
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 20 mm
Von/Mit: Thierry Nieus (u. a.)
Erscheinungsdatum: 27.03.2018
Gewicht: 0,565 kg
Artikel-ID: 111071619
Über den Autor
Prof. Giovanni Naldi studied Mathematics at the University of Pavia and at the University of Milan, where he also received his PhD in Applied Mathematics. He is currently a full professor of Numerical Analysis at the University of Milan and the director of the ADAMSS (ADvanced Applied Mathematical and Statistical Sciences) Center at the same University. His research work mainly focuses on the numerical analysis of partial differential equations, wavelet-based methods; multiscale models, non-linear evolution phenomena, biomathematics, and computational neuroscience. He has supervised eight doctoral theses and is the author of more than 60 papers.
Prof. Thiery Nieus received his PhD in Applied Mathematics at the Department of Mathematics F. Enriques in Milan (Italy). His research focuses on the computations performed by neuronal networks. His work involves the analysis and modeling of multiscale data, ranging from single synapses to population recordings. In September 2016 he joined Marcello Massimini's laboratory (University of Milan, Italy), working on computational models of the thalamocortical circuit and on complexity measures of TMS/EEG data.
Zusammenfassung
Offers a survey on recent hot topics in computational neuroscience
Includes state of the art chapters (within a huge literature)
Provides recent applications using big data and modelling
Inhaltsverzeichnis

1 Simulating cortical Local Field Potentials and Thalamus dynamic regimes with integrate-and-fire neurons.- 2 Computational modeling as a means to defining neuronal spike pattern behaviors.- 3 Chemotactic guidance of growth cones: a hybrid computational model.- 4 Mathematical Modeling of Cerebellar Granular Layer Neurons and Network Activity: Information Estimation, Population Behaviour and Robotic Abstractions.- 5 Bifurcation analysis of a sparse neural network with cubic topology.- 6 Simultaneous jumps in interacting particle systems: from neuronal networks to a general framework.- 7 Neural fields: Localised states with piece-wise constant interactions.- 8 Mathematical models of visual perception based on cortical architectures.- 9 Mathematical models of visual perception for the analysis of Geometrical optical illusions.- 10 Exergaming for autonomous rehabilitation.- 11 E-infrastructures for neuroscientists: the GAAIN and neuGRID examples.- 12 Nonlinear Time series Analysis.- 13Measures of spike train synchrony and Directionality.- 14 Space-by-time tensor decomposition of single-trial analysis of neural signals.- 15 Inverse Modeling for MEG/EEG data.

Details
Erscheinungsjahr: 2018
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: ix
253 S.
ISBN-13: 9783319682969
ISBN-10: 3319682962
Sprache: Englisch
Herstellernummer: 978-3-319-68296-9
Einband: Gebunden
Autor: Naldi, Giovanni
Nieus, Thierry
Redaktion: Nieus, Thierry
Naldi, Giovanni
Herausgeber: Giovanni Naldi/Thierry Nieus
Auflage: 1st edition 2017
Hersteller: Springer International Publishing
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 20 mm
Von/Mit: Thierry Nieus (u. a.)
Erscheinungsdatum: 27.03.2018
Gewicht: 0,565 kg
Artikel-ID: 111071619
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte