Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Deutsch
74,99 €
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
E. Einführung.- E.1. Ordnung und Selbstorganisation.- E.2. Selbsterregte Schwingungen einer gestrichenen Saite.- E.3. Dissipative Strukturen.- 1. Deterministische dynamische Systeme.- 1.1. Phasenfluß.- 1.2. Gewöhnliche Differentialgleichungen.- 1.3. Lineare Differentialgleichungen mit konstanten Koeffizienten.- 1.4. Stabilität von Fixpunkten.- 1.5. Grenzmengen und Attraktoren.- 1.6. Zeitdiskrete Systeme (iterierte Abbildungen).- 1.7. Strukturelle Stabilität.- 2. Systeme mit einem Freiheitsgrad.- 2.1. Allgemeine Eigenschaften.- 2.2. Weitere Beispiele.- 3. Systeme mit zwei Freiheitsgraden.- 3.1. Multistabilität.- 3.2. Grenzzyklen. Satz von Poincaré.- 3.3. Wiederkehrabbildung.- 3.4. Van der Polsche Differentialgleichung.- 3.5. Mittelungsverfahren.- 3.6. Weitere Beispiele.- 3.7. Poincaré-Index.- 4. Systeme mit mehr als zwei Freiheitsgraden.- 4.1. Invariante Tori.- 4.2. Elimination schneller Variabler.- 4.3. Selektion und Evolution.- 5. Chaotische Attraktoren.- 5.1. Chaos in zeitdiskreten Systemen.- 5.2. Chaos bei Differentialgleichungen.- 5.3. ?-Grenzmengen und invariante Verteilungen.- 5.4. Eigenschaften chaotischer Attraktoren.- 6. Bifurkationstheorie.- 6.1. Zentrale Mannigfaltigkeit.- 6.2. Bifurkationen von Fixpunkten einparametriger Differentialgleichungen.- 6.3. Bifurkationen von Fixpunkten einparametriger Abbildungen.- 7. Katastrophentheorie.- 7.1. Einführung.- 7.2. Falten und Spitzen.- 7.3. Elementare Katastrophen.- 8. Reaktions- Diffusions-Systeme.- 8.1. Grundgleichung.- 8.2. Fixpunkte und deren Stabilität.- 8.3. Kubische Nichtlinearität und Diffusion.- 8.4. Brüsselator mit Diffusion.- 9. Stochastische dynamische Systeme.- 9.1. Wahrscheinlichkeitstheoretische Grundbegriffe.- 9.2. Stochastische Prozesse.- 9.3. Markow-Prozesse.- 10. StochastischeDifferentialgleichungen.- 10.1. Additives weißes Rauschen.- 10.2. Multiplikatives weißes Rauschen.- 10.3. Farbiges Rauschen.- 11. Geburts- und Todesprozesse.- 11.1. Modell und Grundgleichungen.- 11.2. Invariante Verteilung.- 12. Zeitdiskrete Systeme mit Rauschen.- 13. Stochastische partielle Differentialgleichungen.- 13.1. Modell und Lösungsbegriff.- 13.2. Markow-Charakter und invariante Verteilung.- 13.3. Wahrscheinlichste Zustände und Tunnelverhalten.- A. Anhang.- A.1. Mathematische Modellbildung.- A.2. Einzelwissenschaftliche Ergänzungen.- A.2.1. Mechanische Systeme.- A.2.2. Elektrische Systeme.- A.2.3. Chemische Systeme.- A.2.4. Biologische Systeme.- A.3. Thermodynamische Grundlagen.- A.3.1. Systeme im thermodynamischen Gleichgewicht.- A.3.2. Nichtgleichgewichtssysteme.- A.3.3. Thermodynamische Stabilitätstheorie.- A.4. Synergetik.- Lösungen der Aufgaben.- Weiterführende Literatur.- Abbildungsnachweis.
E. Einführung.- E.1. Ordnung und Selbstorganisation.- E.2. Selbsterregte Schwingungen einer gestrichenen Saite.- E.3. Dissipative Strukturen.- 1. Deterministische dynamische Systeme.- 1.1. Phasenfluß.- 1.2. Gewöhnliche Differentialgleichungen.- 1.3. Lineare Differentialgleichungen mit konstanten Koeffizienten.- 1.4. Stabilität von Fixpunkten.- 1.5. Grenzmengen und Attraktoren.- 1.6. Zeitdiskrete Systeme (iterierte Abbildungen).- 1.7. Strukturelle Stabilität.- 2. Systeme mit einem Freiheitsgrad.- 2.1. Allgemeine Eigenschaften.- 2.2. Weitere Beispiele.- 3. Systeme mit zwei Freiheitsgraden.- 3.1. Multistabilität.- 3.2. Grenzzyklen. Satz von Poincaré.- 3.3. Wiederkehrabbildung.- 3.4. Van der Polsche Differentialgleichung.- 3.5. Mittelungsverfahren.- 3.6. Weitere Beispiele.- 3.7. Poincaré-Index.- 4. Systeme mit mehr als zwei Freiheitsgraden.- 4.1. Invariante Tori.- 4.2. Elimination schneller Variabler.- 4.3. Selektion und Evolution.- 5. Chaotische Attraktoren.- 5.1. Chaos in zeitdiskreten Systemen.- 5.2. Chaos bei Differentialgleichungen.- 5.3. ?-Grenzmengen und invariante Verteilungen.- 5.4. Eigenschaften chaotischer Attraktoren.- 6. Bifurkationstheorie.- 6.1. Zentrale Mannigfaltigkeit.- 6.2. Bifurkationen von Fixpunkten einparametriger Differentialgleichungen.- 6.3. Bifurkationen von Fixpunkten einparametriger Abbildungen.- 7. Katastrophentheorie.- 7.1. Einführung.- 7.2. Falten und Spitzen.- 7.3. Elementare Katastrophen.- 8. Reaktions- Diffusions-Systeme.- 8.1. Grundgleichung.- 8.2. Fixpunkte und deren Stabilität.- 8.3. Kubische Nichtlinearität und Diffusion.- 8.4. Brüsselator mit Diffusion.- 9. Stochastische dynamische Systeme.- 9.1. Wahrscheinlichkeitstheoretische Grundbegriffe.- 9.2. Stochastische Prozesse.- 9.3. Markow-Prozesse.- 10. StochastischeDifferentialgleichungen.- 10.1. Additives weißes Rauschen.- 10.2. Multiplikatives weißes Rauschen.- 10.3. Farbiges Rauschen.- 11. Geburts- und Todesprozesse.- 11.1. Modell und Grundgleichungen.- 11.2. Invariante Verteilung.- 12. Zeitdiskrete Systeme mit Rauschen.- 13. Stochastische partielle Differentialgleichungen.- 13.1. Modell und Lösungsbegriff.- 13.2. Markow-Charakter und invariante Verteilung.- 13.3. Wahrscheinlichste Zustände und Tunnelverhalten.- A. Anhang.- A.1. Mathematische Modellbildung.- A.2. Einzelwissenschaftliche Ergänzungen.- A.2.1. Mechanische Systeme.- A.2.2. Elektrische Systeme.- A.2.3. Chemische Systeme.- A.2.4. Biologische Systeme.- A.3. Thermodynamische Grundlagen.- A.3.1. Systeme im thermodynamischen Gleichgewicht.- A.3.2. Nichtgleichgewichtssysteme.- A.3.3. Thermodynamische Stabilitätstheorie.- A.4. Synergetik.- Lösungen der Aufgaben.- Weiterführende Literatur.- Abbildungsnachweis.
Inhaltsverzeichnis
E. Einführung.- E.1. Ordnung und Selbstorganisation.- E.2. Selbsterregte Schwingungen einer gestrichenen Saite.- E.3. Dissipative Strukturen.- 1. Deterministische dynamische Systeme.- 1.1. Phasenfluß.- 1.2. Gewöhnliche Differentialgleichungen.- 1.3. Lineare Differentialgleichungen mit konstanten Koeffizienten.- 1.4. Stabilität von Fixpunkten.- 1.5. Grenzmengen und Attraktoren.- 1.6. Zeitdiskrete Systeme (iterierte Abbildungen).- 1.7. Strukturelle Stabilität.- 2. Systeme mit einem Freiheitsgrad.- 2.1. Allgemeine Eigenschaften.- 2.2. Weitere Beispiele.- 3. Systeme mit zwei Freiheitsgraden.- 3.1. Multistabilität.- 3.2. Grenzzyklen. Satz von Poincaré.- 3.3. Wiederkehrabbildung.- 3.4. Van der Polsche Differentialgleichung.- 3.5. Mittelungsverfahren.- 3.6. Weitere Beispiele.- 3.7. Poincaré-Index.- 4. Systeme mit mehr als zwei Freiheitsgraden.- 4.1. Invariante Tori.- 4.2. Elimination schneller Variabler.- 4.3. Selektion und Evolution.- 5. Chaotische Attraktoren.- 5.1. Chaos in zeitdiskreten Systemen.- 5.2. Chaos bei Differentialgleichungen.- 5.3. ?-Grenzmengen und invariante Verteilungen.- 5.4. Eigenschaften chaotischer Attraktoren.- 6. Bifurkationstheorie.- 6.1. Zentrale Mannigfaltigkeit.- 6.2. Bifurkationen von Fixpunkten einparametriger Differentialgleichungen.- 6.3. Bifurkationen von Fixpunkten einparametriger Abbildungen.- 7. Katastrophentheorie.- 7.1. Einführung.- 7.2. Falten und Spitzen.- 7.3. Elementare Katastrophen.- 8. Reaktions- Diffusions-Systeme.- 8.1. Grundgleichung.- 8.2. Fixpunkte und deren Stabilität.- 8.3. Kubische Nichtlinearität und Diffusion.- 8.4. Brüsselator mit Diffusion.- 9. Stochastische dynamische Systeme.- 9.1. Wahrscheinlichkeitstheoretische Grundbegriffe.- 9.2. Stochastische Prozesse.- 9.3. Markow-Prozesse.- 10. StochastischeDifferentialgleichungen.- 10.1. Additives weißes Rauschen.- 10.2. Multiplikatives weißes Rauschen.- 10.3. Farbiges Rauschen.- 11. Geburts- und Todesprozesse.- 11.1. Modell und Grundgleichungen.- 11.2. Invariante Verteilung.- 12. Zeitdiskrete Systeme mit Rauschen.- 13. Stochastische partielle Differentialgleichungen.- 13.1. Modell und Lösungsbegriff.- 13.2. Markow-Charakter und invariante Verteilung.- 13.3. Wahrscheinlichste Zustände und Tunnelverhalten.- A. Anhang.- A.1. Mathematische Modellbildung.- A.2. Einzelwissenschaftliche Ergänzungen.- A.2.1. Mechanische Systeme.- A.2.2. Elektrische Systeme.- A.2.3. Chemische Systeme.- A.2.4. Biologische Systeme.- A.3. Thermodynamische Grundlagen.- A.3.1. Systeme im thermodynamischen Gleichgewicht.- A.3.2. Nichtgleichgewichtssysteme.- A.3.3. Thermodynamische Stabilitätstheorie.- A.4. Synergetik.- Lösungen der Aufgaben.- Weiterführende Literatur.- Abbildungsnachweis.
Details
| Erscheinungsjahr: | 1989 |
|---|---|
| Fachbereich: | Astronomie |
| Genre: | Mathematik, Medizin, Naturwissenschaften, Physik, Technik |
| Rubrik: | Naturwissenschaften & Technik |
| Thema: | Lexika |
| Medium: | Taschenbuch |
| Inhalt: | 333 S. |
| ISBN-13: | 9783528063467 |
| ISBN-10: | 3528063467 |
| Sprache: | Deutsch |
| Einband: | Kartoniert / Broschiert |
| Autor: | Jetschke, Gottfried |
| Hersteller: |
Vieweg & Teubner
Vieweg+Teubner Verlag |
| Verantwortliche Person für die EU: | Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com |
| Maße: | 244 x 170 x 19 mm |
| Von/Mit: | Gottfried Jetschke |
| Erscheinungsdatum: | 01.01.1989 |
| Gewicht: | 0,588 kg |