Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Number Theory
A Mathemythical Approach
Buch von James/Marks, Tim/Flapan, Erica Pommersheim
Sprache: Englisch

207,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-3 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Preface.

To the Student.

To the Instructor.

Acknowledgements.

0. Prologue.

1. Numbers, Rational and Irrational.

(Historical figures: Pythagoras and Hypatia).

1.1 Numbers and the Greeks.

1.2 Numbers you know.

1.3 A First Look at Proofs.

1.4 Irrationality of he square root of 2.

1.5 Using Quantifiers.

2. Mathematical Induction.

(Historical figure: Noether).

2.[...] Principle of Mathematical Induction.

2.2 Strong Induction and the Well Ordering Principle.

2.3 The Fibonacci Sequence and the Golden Ratio.

2.4 The Legend of the Golden Ratio.

3. Divisibility and Primes.

(Historical figure: Eratosthenes).

3.1 Basic Properties of Divisibility.

3.2 Prime and Composite Numbers.

3.3 Patterns in the Primes.

3.4 Common Divisors and Common Multiples.

3.5 The Division Theorem.

3.6 Applications of gcd and lcm.

[...] Euclidean Algorithm.

(Historical figure: Euclid).

4.1 The Euclidean Algorithm.

4.2 Finding the Greatest Common Divisor.

4.3 A Greeker Argument that the square root of 2 is Irrational.

5. Linear Diophantine Equations.

(Historical figure: Diophantus).

5.1 The Equation aX + bY = 1.

5.2 Using the Euclidean Algorithm to Find a Solution.

5.3 The Diophantine Equation aX + bY = n.

5.4 Finding All Solutions to a Linear Diophantine Equation.

6. The Fundamental Theorem of Arithmetic.

(Historical figure: Mersenne).

6.1 The Fundamental Theorem.

6.2 Consequences of the Fundamental Theorem.

7. Modular Arithmetic.

(Historical figure: Gauss).

7.1 Congruence modulo n.

7.2 Arithmetic with Congruences.

7.3 Check Digit Schemes.

7.4 The Chinese Remainder Theorem.

7.5 The Gregorian Calendar.

7.6 The Mayan Calendar.

8. Modular Number Systems.

(Historical figure: Turing).

8.1 The Number System Zn: an Informal View.

8.2 The Number System Zn: Definition and Basic Properties.

8.3 Multiplicative Inverses in Zn.

8.4 Elementary Cryptography.

8.5 Encryption Using Modular Multiplication.

9. Exponents Modulo n.

(Historical figure: Fermat).

9.1 Fermat's Little Theorem.

9.2 Reduced Residues and the Euler phi-function.

9.3 Euler's Theorem.

9.4 Exponentiation Ciphers with a Prime modulus.

9.5 The RSA Encryption Algorithm.

10. Primitive Roots.

(Historical figure: Lagrange).

10.1 Zn.

10.2 Solving Polynomial Equations in Zn.

10.3 Primitive Roots.

10.4 Applications of Primitive Roots.

11. Quadratic Residues.

(Historical figure: Eisenstein)

11.1 Squares Modulo n

11.2 Euler's Identity and the Quadratic Character of -1

11.3 The Law of Quadratic Reciprocity

11.4 Gauss's Lemma

11.5 Quadratic Residues and Lattice Points.

11.6 The Proof of Quadratic Reciprocity.

12. Primality Testing.

(Historical figure: Erdös).

12.1 Primality testing.

12.2 Continued Consideration of Charmichael Numbers.

12.3 The Miller-Rabin Primality test.

12.4 Two Special Polynomial Equations in Zp.

12.5 Proof that Millar-Rabin is Effective.

12.6 Prime Certificates.

12.7 The AKS Deterministic Primality Test.

13. Gaussian Integers.

(Historical figure: Euler).

13.1 Definition of Gaussian Integers

13.2 Divisibility and Primes in Z[i].

13.3 The Division Theorem for the Gaussian Integers.

13.4 Unique Factorization in Z[i].

13.5 Gaussian Primes.

13.6 Fermat's Two Squares Theorem.

14. Continued Fractions.

(Historical figure: Ramanujan).

14.1 Expressing Rational Numbers as Continued Fractions.

14.2 Expressing Irrational Numbers as Continued Fractions.

14.3 Approximating Irrational Numbers Using Continued Fractions.

14.4 Proving that Convergents are Fantastic Approximations.

15. Some Nonlinear Diophantine Equations.

(Historical figure: Germain).

15.1 Pell's Equation

15.2 Fermat's Last Theorem

15.3 Proof of Fermat's Last Theorem for n = 4.

15.4 Germain's Contributions to Fermat's Last Theorem

15.5 A Geometric look at the Equation x^4 + y^4 = z^2.

Appendix: Axioms of Number Theory.

A.1 What is a Number System?

A.2 Order Properties of the Integers.

A.3 Building Results From Our Axioms.

A.4 The Principle of Mathematical Induction.
Preface.

To the Student.

To the Instructor.

Acknowledgements.

0. Prologue.

1. Numbers, Rational and Irrational.

(Historical figures: Pythagoras and Hypatia).

1.1 Numbers and the Greeks.

1.2 Numbers you know.

1.3 A First Look at Proofs.

1.4 Irrationality of he square root of 2.

1.5 Using Quantifiers.

2. Mathematical Induction.

(Historical figure: Noether).

2.[...] Principle of Mathematical Induction.

2.2 Strong Induction and the Well Ordering Principle.

2.3 The Fibonacci Sequence and the Golden Ratio.

2.4 The Legend of the Golden Ratio.

3. Divisibility and Primes.

(Historical figure: Eratosthenes).

3.1 Basic Properties of Divisibility.

3.2 Prime and Composite Numbers.

3.3 Patterns in the Primes.

3.4 Common Divisors and Common Multiples.

3.5 The Division Theorem.

3.6 Applications of gcd and lcm.

[...] Euclidean Algorithm.

(Historical figure: Euclid).

4.1 The Euclidean Algorithm.

4.2 Finding the Greatest Common Divisor.

4.3 A Greeker Argument that the square root of 2 is Irrational.

5. Linear Diophantine Equations.

(Historical figure: Diophantus).

5.1 The Equation aX + bY = 1.

5.2 Using the Euclidean Algorithm to Find a Solution.

5.3 The Diophantine Equation aX + bY = n.

5.4 Finding All Solutions to a Linear Diophantine Equation.

6. The Fundamental Theorem of Arithmetic.

(Historical figure: Mersenne).

6.1 The Fundamental Theorem.

6.2 Consequences of the Fundamental Theorem.

7. Modular Arithmetic.

(Historical figure: Gauss).

7.1 Congruence modulo n.

7.2 Arithmetic with Congruences.

7.3 Check Digit Schemes.

7.4 The Chinese Remainder Theorem.

7.5 The Gregorian Calendar.

7.6 The Mayan Calendar.

8. Modular Number Systems.

(Historical figure: Turing).

8.1 The Number System Zn: an Informal View.

8.2 The Number System Zn: Definition and Basic Properties.

8.3 Multiplicative Inverses in Zn.

8.4 Elementary Cryptography.

8.5 Encryption Using Modular Multiplication.

9. Exponents Modulo n.

(Historical figure: Fermat).

9.1 Fermat's Little Theorem.

9.2 Reduced Residues and the Euler phi-function.

9.3 Euler's Theorem.

9.4 Exponentiation Ciphers with a Prime modulus.

9.5 The RSA Encryption Algorithm.

10. Primitive Roots.

(Historical figure: Lagrange).

10.1 Zn.

10.2 Solving Polynomial Equations in Zn.

10.3 Primitive Roots.

10.4 Applications of Primitive Roots.

11. Quadratic Residues.

(Historical figure: Eisenstein)

11.1 Squares Modulo n

11.2 Euler's Identity and the Quadratic Character of -1

11.3 The Law of Quadratic Reciprocity

11.4 Gauss's Lemma

11.5 Quadratic Residues and Lattice Points.

11.6 The Proof of Quadratic Reciprocity.

12. Primality Testing.

(Historical figure: Erdös).

12.1 Primality testing.

12.2 Continued Consideration of Charmichael Numbers.

12.3 The Miller-Rabin Primality test.

12.4 Two Special Polynomial Equations in Zp.

12.5 Proof that Millar-Rabin is Effective.

12.6 Prime Certificates.

12.7 The AKS Deterministic Primality Test.

13. Gaussian Integers.

(Historical figure: Euler).

13.1 Definition of Gaussian Integers

13.2 Divisibility and Primes in Z[i].

13.3 The Division Theorem for the Gaussian Integers.

13.4 Unique Factorization in Z[i].

13.5 Gaussian Primes.

13.6 Fermat's Two Squares Theorem.

14. Continued Fractions.

(Historical figure: Ramanujan).

14.1 Expressing Rational Numbers as Continued Fractions.

14.2 Expressing Irrational Numbers as Continued Fractions.

14.3 Approximating Irrational Numbers Using Continued Fractions.

14.4 Proving that Convergents are Fantastic Approximations.

15. Some Nonlinear Diophantine Equations.

(Historical figure: Germain).

15.1 Pell's Equation

15.2 Fermat's Last Theorem

15.3 Proof of Fermat's Last Theorem for n = 4.

15.4 Germain's Contributions to Fermat's Last Theorem

15.5 A Geometric look at the Equation x^4 + y^4 = z^2.

Appendix: Axioms of Number Theory.

A.1 What is a Number System?

A.2 Order Properties of the Integers.

A.3 Building Results From Our Axioms.

A.4 The Principle of Mathematical Induction.
Details
Erscheinungsjahr: 2010
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 784 S.
ISBN-13: 9780470424131
ISBN-10: 0470424133
Sprache: Englisch
Einband: Gebunden
Autor: Pommersheim, James/Marks, Tim/Flapan, Erica
Auflage: 1/2010
Hersteller: Wiley-VCH GmbH
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com
Maße: 239 x 197 x 31 mm
Von/Mit: James/Marks, Tim/Flapan, Erica Pommersheim
Erscheinungsdatum: 19.03.2010
Gewicht: 1,192 kg
Artikel-ID: 101557742
Details
Erscheinungsjahr: 2010
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 784 S.
ISBN-13: 9780470424131
ISBN-10: 0470424133
Sprache: Englisch
Einband: Gebunden
Autor: Pommersheim, James/Marks, Tim/Flapan, Erica
Auflage: 1/2010
Hersteller: Wiley-VCH GmbH
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com
Maße: 239 x 197 x 31 mm
Von/Mit: James/Marks, Tim/Flapan, Erica Pommersheim
Erscheinungsdatum: 19.03.2010
Gewicht: 1,192 kg
Artikel-ID: 101557742
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte