Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Portfolio Optimization
Buch von Daniel P. Palomar
Sprache: Englisch

101,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
This comprehensive guide to the world of financial data modeling and portfolio design is a must-read for anyone looking to understand and apply portfolio optimization in a practical context. It bridges the gap between mathematical formulations and the design of practical numerical algorithms. It explores a range of methods, from basic time series models to cutting-edge financial graph estimation approaches. The portfolio formulations span from Markowitz's original 1952 mean-variance portfolio to more advanced formulations, including downside risk portfolios, drawdown portfolios, risk parity portfolios, robust portfolios, bootstrapped portfolios, index tracking, pairs trading, and deep-learning portfolios. Enriched with a remarkable collection of numerical experiments and more than 200 figures, this is a valuable resource for researchers and finance industry practitioners. With slides, R and Python code examples, and exercise solutions available online, it serves as a textbook for portfolio optimization and financial data modeling courses, at advanced undergraduate and graduate level.
This comprehensive guide to the world of financial data modeling and portfolio design is a must-read for anyone looking to understand and apply portfolio optimization in a practical context. It bridges the gap between mathematical formulations and the design of practical numerical algorithms. It explores a range of methods, from basic time series models to cutting-edge financial graph estimation approaches. The portfolio formulations span from Markowitz's original 1952 mean-variance portfolio to more advanced formulations, including downside risk portfolios, drawdown portfolios, risk parity portfolios, robust portfolios, bootstrapped portfolios, index tracking, pairs trading, and deep-learning portfolios. Enriched with a remarkable collection of numerical experiments and more than 200 figures, this is a valuable resource for researchers and finance industry practitioners. With slides, R and Python code examples, and exercise solutions available online, it serves as a textbook for portfolio optimization and financial data modeling courses, at advanced undergraduate and graduate level.
Über den Autor
Daniel P. Palomar is a Professor at the Hong Kong University of Science and Technology. He is recognized as EURASIP Fellow, IEEE Fellow, and Fulbright Scholar, and recipient of numerous research awards. His current research focus is on convex optimization applications in signal processing, machine learning, and finance. He is the author of many research articles and books, including 'Convex Optimization in Signal Processing and Communications'.
Inhaltsverzeichnis
Preface; 1. Introduction; I. Financial Data: 2. Financial data: stylized facts; 3. Financial data: IID modeling; 4. Financial data: time series modeling; 5. Financial data: graphs; II. Portfolio Optimization: 6. Portfolio basics; 7. Modern portfolio theory; 8. Portfolio backtesting; 9. High-order portfolios; 10. Portfolios with alternative risk measures; 11. Risk parity portfolios; 12. Graph-based portfolios; 13. Index tracking portfolios; 14. Robust portfolios; 15. Pairs trading portfolios; 16. Deep learning portfolios; Appendices: Appendix A. Convex optimization theory; Appendix B. Optimization algorithms.
Details
Erscheinungsjahr: 2025
Fachbereich: Allgemeines
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
ISBN-13: 9781009428088
ISBN-10: 100942808X
Sprache: Englisch
Einband: Gebunden
Autor: Palomar, Daniel P.
Hersteller: Cambridge University Press
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 260 x 183 x 37 mm
Von/Mit: Daniel P. Palomar
Erscheinungsdatum: 06.05.2025
Gewicht: 1,326 kg
Artikel-ID: 133446054
Über den Autor
Daniel P. Palomar is a Professor at the Hong Kong University of Science and Technology. He is recognized as EURASIP Fellow, IEEE Fellow, and Fulbright Scholar, and recipient of numerous research awards. His current research focus is on convex optimization applications in signal processing, machine learning, and finance. He is the author of many research articles and books, including 'Convex Optimization in Signal Processing and Communications'.
Inhaltsverzeichnis
Preface; 1. Introduction; I. Financial Data: 2. Financial data: stylized facts; 3. Financial data: IID modeling; 4. Financial data: time series modeling; 5. Financial data: graphs; II. Portfolio Optimization: 6. Portfolio basics; 7. Modern portfolio theory; 8. Portfolio backtesting; 9. High-order portfolios; 10. Portfolios with alternative risk measures; 11. Risk parity portfolios; 12. Graph-based portfolios; 13. Index tracking portfolios; 14. Robust portfolios; 15. Pairs trading portfolios; 16. Deep learning portfolios; Appendices: Appendix A. Convex optimization theory; Appendix B. Optimization algorithms.
Details
Erscheinungsjahr: 2025
Fachbereich: Allgemeines
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
ISBN-13: 9781009428088
ISBN-10: 100942808X
Sprache: Englisch
Einband: Gebunden
Autor: Palomar, Daniel P.
Hersteller: Cambridge University Press
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 260 x 183 x 37 mm
Von/Mit: Daniel P. Palomar
Erscheinungsdatum: 06.05.2025
Gewicht: 1,326 kg
Artikel-ID: 133446054
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte