Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Probabilistic Machine Learning
Advanced Topics
Sprache: Englisch

171,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
An advanced book for researchers and graduate students working in machine learning and statistics who want to learn about deep learning, Bayesian inference, generative models, and decision making under uncertainty.

An advanced counterpart to Probabilistic Machine Learning: An Introduction, this high-level textbook provides researchers and graduate students detailed coverage of cutting-edge topics in machine learning, including deep generative modeling, graphical models, Bayesian inference, reinforcement learning, and causality. This volume puts deep learning into a larger statistical context and unifies approaches based on deep learning with ones based on probabilistic modeling and inference. With contributions from top scientists and domain experts from places such as Google, DeepMind, Amazon, Purdue University, NYU, and the University of Washington, this rigorous book is essential to understanding the vital issues in machine learning.

  • Covers generation of high dimensional outputs, such as images, text, and graphs
  • Discusses methods for discovering insights about data, based on latent variable models
  • Considers training and testing under different distributions
  • Explores how to use probabilistic models and inference for causal inference and decision making
  • Features online Python code accompaniment
An advanced book for researchers and graduate students working in machine learning and statistics who want to learn about deep learning, Bayesian inference, generative models, and decision making under uncertainty.

An advanced counterpart to Probabilistic Machine Learning: An Introduction, this high-level textbook provides researchers and graduate students detailed coverage of cutting-edge topics in machine learning, including deep generative modeling, graphical models, Bayesian inference, reinforcement learning, and causality. This volume puts deep learning into a larger statistical context and unifies approaches based on deep learning with ones based on probabilistic modeling and inference. With contributions from top scientists and domain experts from places such as Google, DeepMind, Amazon, Purdue University, NYU, and the University of Washington, this rigorous book is essential to understanding the vital issues in machine learning.

  • Covers generation of high dimensional outputs, such as images, text, and graphs
  • Discusses methods for discovering insights about data, based on latent variable models
  • Considers training and testing under different distributions
  • Explores how to use probabilistic models and inference for causal inference and decision making
  • Features online Python code accompaniment
Details
Erscheinungsjahr: 2023
Reihe: Adaptive Computation and Machine Learning series
Inhalt: Einband - fest (Hardcover)
ISBN-13: 9780262048439
ISBN-10: 0262048434
Sprache: Englisch
Autor: Kevin P. Murphy
Hersteller: MIT Press
Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de
Maße: 240 x 210 x 60 mm
Von/Mit: Kevin P. Murphy
Erscheinungsdatum: 15.08.2023
Gewicht: 2,257 kg
Artikel-ID: 126828498
Details
Erscheinungsjahr: 2023
Reihe: Adaptive Computation and Machine Learning series
Inhalt: Einband - fest (Hardcover)
ISBN-13: 9780262048439
ISBN-10: 0262048434
Sprache: Englisch
Autor: Kevin P. Murphy
Hersteller: MIT Press
Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de
Maße: 240 x 210 x 60 mm
Von/Mit: Kevin P. Murphy
Erscheinungsdatum: 15.08.2023
Gewicht: 2,257 kg
Artikel-ID: 126828498
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte

slide 4 to 6